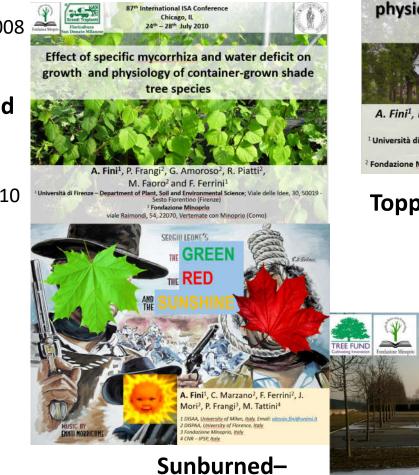


Measuring ecosystem services by urban species: the LIFE Urbangreen project


Preliminary results

<u>Alessio Fini</u>*, Jacopo Mori, Irene Vigevani, Francesco Ferrini, Alice Pasquinelli, Marco Gibin, Piotr Wezyk, Osvaldo Failla, Paolo Viskanic

* DISAA, Università di Milano, via Celoria 2, Milano

I used to torture lots of trees each year, to get data for the ISA conference...

¹ Università di Firenze – Department of Plant, Soil and Environmental Science; Viale delle Idee, 30, 50019 - Sesto Fiorentino (Firenze) Fondazione Minoprio - MIRT; viale Raimondi, 54, 22070, Vertemate con Minoprio (Como)

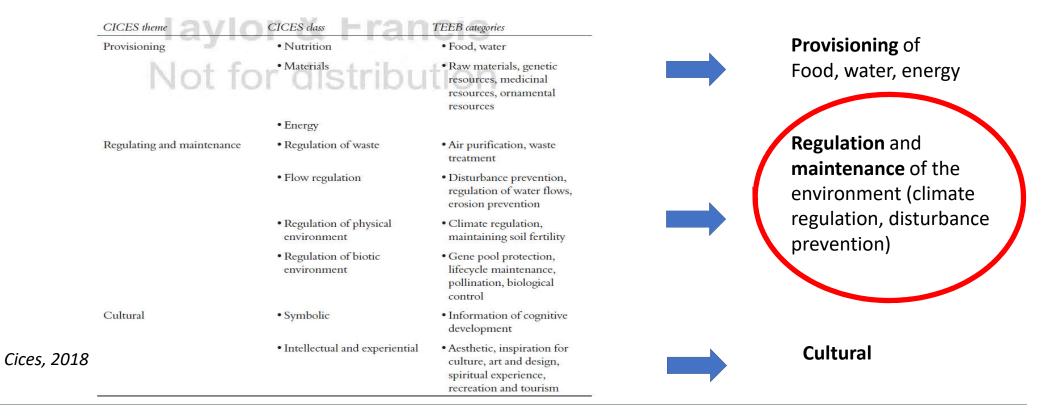
Topped - Sydney, 2011

Sealed – Columbus, 2018

Root severed – Milwaukee, 2014

Washington, 2017

Not this time!


No tree was injured for this presentation! Rather, urban trees were measured in situ in their growing environment

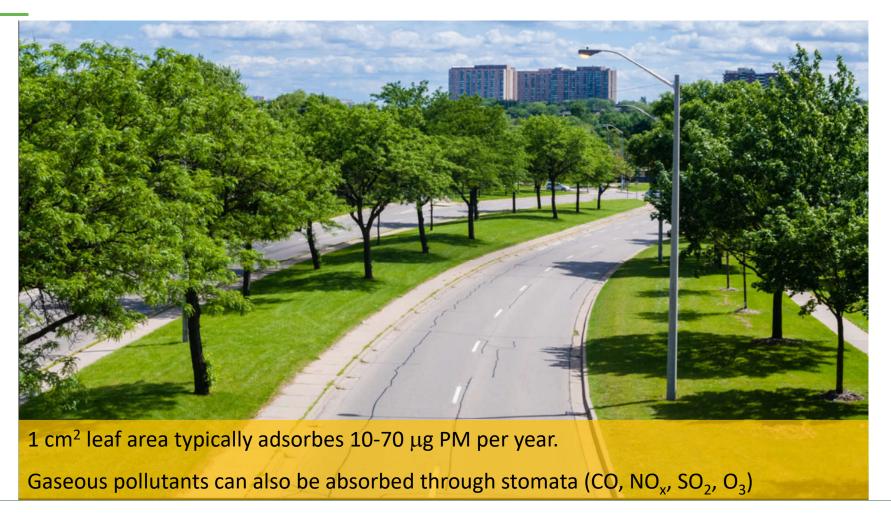
Maybe not a perfect environment for growing... further we ask trees to provide ecosystem services...

Ecosystem services

Green areas provide ecosystem services = benefits arising from ecological processes which directly or indirectly increase human well-being

Regulation and maintenance: microclimate amelioration

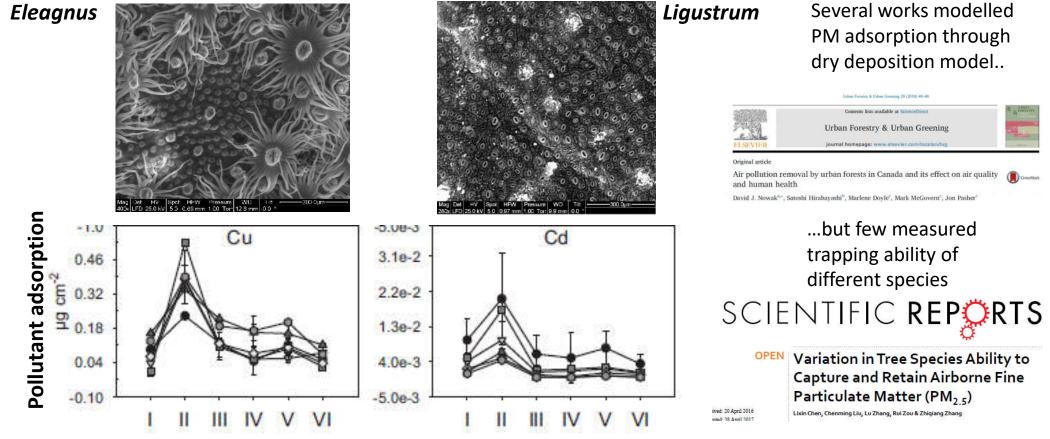
Regulation and maintenance: microclimate amelioration



Within canopy temperature differences and cooling ability of *Tilia cordata* trees grown in urban conditions

CrossMark

Mohammad A. Rahman ^{a, *}, Astrid Moser ^b, Thomas Rötzer ^b, Stephan Pauleit ^a


Regulation and maintenance: air quality amelioration

Regulation and maintenance: air quality amelioration

Leaf deposition of different elements in *Viburnum lucidum* (black circle), *A. unedo* (white triangle down), *P. × fraseri* (black square), *L. nobilis* (white diamond), *E. × ebbingei* (black triangle up) and *L. japonicum* (white circle). From Mori et al., 2015, 2016.

Regulation and maintenance: reduction of atmospheric CO₂

Trees are excellent sinks of CO2.

They **assimilate** CO_2 (i.e. convert inorganic atmospheric carbon to carbohydrates through photosynthesis), and use it for making leaves, fruits, flowers, and to defend (secondary metabolism)

and

they **store carbon** (i.e. stock carbon as woody biomass of trunk, branches, and roots)

LIFE

Quantifying benefits: I-Tree

Regulation and maintenance: reduction of atmospheric CO₂

- CO₂ removal by urban trees has often been estimated using **empiric models**
- They estimate biomass fitting a large number of experimental observations on different trees
- Several equations have been developed for forest trees, and often are adapted to urban sites
- They lack a mechanistic approach, thus are only representative of the site where they were developed
- More equations are needed for urban tree species

E.G.:

Carbon storage

Biomass = a (DBH)^b

CO₂ assimilation is proxied by **carbon sequestration**

Increase in biomass over consecutive years

Empiric models

Tree species (Spp. Code)	a	b	R2	RMSE
Fraxinus pennsylvanica (FRPE)	5.9 E-04	2.206	0.987	0.175
Gleditsia triancanthos (GLTR)	5.1 E-04	2.220	0.988	0.188
Tilia cordata (TICO)	9.4 E-04	2.042	0.953	0.257
Quercus macrocarpa (QUMA)	2.4 E-04	2.425	0.938	0.365
Celtis occidentalis (CEOC)	1.4 E-03	1.928	0.959	0.293
Ulmus americana (ULAM)	1.8 E-03	1.869	0.924	0.268
Acer platanoides (ACPL)	1.9 E-03	1.785	0.940	0.280
Ulmus pumila (ULPU)	4.9 E-03	1.613	0.874	0.461
Populus sargentii (POSA)	2.1 E-03	1.873	0.991	0.181
Gymnocladus dioicus (GYDI)	4.2 E-04	2.059	0.816	0.411
Acer saccharinum (ACSA)	3.6 E-04	2.292	0.964	0.334

Table 1 Parameter estimates for allometric equations relating volume (m³) and diameter breast height (DBH, cm)

Parameter values are given for each individual species. The equation form is Volume = $a(DBH)^b$

McHale et al., 2009, Urban Ecosys

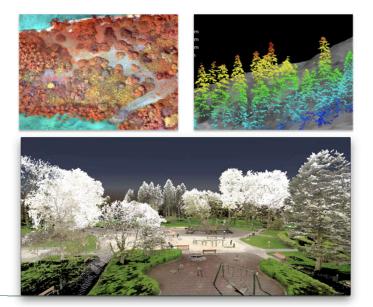
LIFE URBANGREEN (2018–2022)

2 municipalities: Rimini (Italy) and Krakow (Poland)

10 woody species

Goals: 1- measure some ecosystem services by urban trees;

2- investigate the effects of maintenance on ecosystem services (still to do)



1- Measuring ecosystem services

Two-week measurement campaigns have been conducted in the two cities to assess some ecosystem services by leaf gas exchange measurements and collection of leaves for pollution trapping efficiency determination. Lidar scanning is ongoing for determining biometrics

- Storage of CO₂
- Assimilation CO₂
- Adsorption of PM
- Microclimate improvement by transpiration

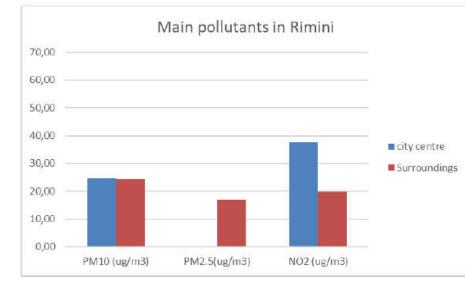
Research group

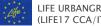
Project coordinator: R3 GIS srl – Merano (Italy)

Partners

University of Milano (IT) Progea 4D – Krakow (PL) Anthea srl (City of Rimini – IT) Zarzad Zieleni Miejskiej (City of Krakow - PL)

Project begun on: July 2018




Experimental sites

Parameter (30-y-average)	Rimini	Krakow
Climate zone (Koppen)	Cfa	Dfb
Tmin (°C)	8,6	3,8
Tmax (°C)	17,6	12,8
Rainfall (mm)	705	622

Main pollutants in Krakow 70,00 60,00 50,00 40,00 Planty Park 30,00 Surroundings 20,00 10,00 0,00 PM10 (ug/m3) PM2.5(ug/m3) NO2 (ug/m3)

Fig. 1 - Average PM10, PM2,5, and NO2 in the two cities.¹

LIFE URBANGREEN (LIFE17 CCA/ITA/000079)

Experimental areas

Before the project started, two city transects representative of the whole municipality were selected

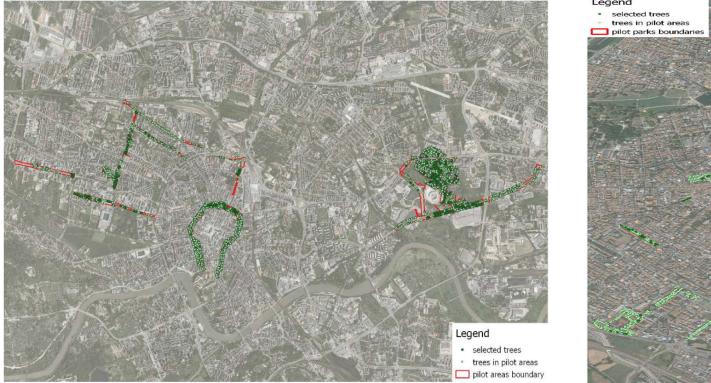
Stratification

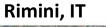
Experimental areas were stratified in:

Paved areas: street trees, trees in parking lots, tree planted in well-defined planting pits or with visible conflicts with the built environment

Unpaved areas: tree in parks and gardens, growing in unpaved soil with negligible conflicts with the built environment

10 model species per city were selected based on: 1) species relevance for the municipality; 2) tree size at maturity; 3) leaf persistence


Specie	Habitus	Specie	Habitus
Quercus robur	Large deciduous	Quercus robur	Large deciduous
Platanus x acerifolia	Large deciduous	Fraxinus excelsior	Large deciduous
<u>Populus nigra</u>	Large deciduous	<u>Populus nigra</u>	Large deciduous
Quercus ilex	Large evergreen	Ulmus laevis	Large deciduous
<u>Pinus pinea</u>	Large evergreen	<u>Pinus nigra</u>	Medium evergreen
<u>Tilia x europaea</u>	Medium-large deciduous	<u>Tilia cordata</u>	Medium-large deciduous
<u>Aesculus hippocastanum</u>	Medium-large deciduous	Aesculus hippocastanum	Medium-large deciduous
<u>Acer negundo</u>	Medium deciduous	Acer platanoides	Medium-large deciduous
Ligustrum lucidum	Small semi-deciduous	Sorbus aucuparia	Small deciduous
Prunus laurocerasus	Evergreen shrub	Cornus alba	Deciduous shrub



Trees in the experimental areas

Krakow, PL

Trees of the selected species in the experimental areas were identified, plotted on gis, and aggregated in 12 replicate plots containing all species.

LIFE URBANGREEN | Project partners introduction

Trees in the experimental areas

Tree age was retrieved with the assistance of Anthea and ZZM (municipal tree care companies)

Stem DBH, tree height and dripline area (DLA) were measured on about 500 trees per city

Leaf Area Index (LAI) was measured using a LAI-meter

A provisional estimate of **total leaf area** was calculated as **LAI** * **DLA**

Based on biometrics, in each plot, average young and mature trees were selected for ecophysiological measurements

Screening CO_2 assimilation, transpiration, and PM adsorption using the big leaf model

- In Rimini, measurements were conducted during spring, summer, and fall on about 650 leaves per season.
- Fully expanded, full sun leaves attached on basal, medial, and distal branches were sampled at 410 ppm CO₂ and saturating irradiance using a Licor-6400.
- Three-hundred cm² of leaves per tree were sampled from the basal, medial, and apical portion of the canopy to measure **pollution adsorption** (for detailed methods, see Mori et al., 2018, Science of The Total Environment)

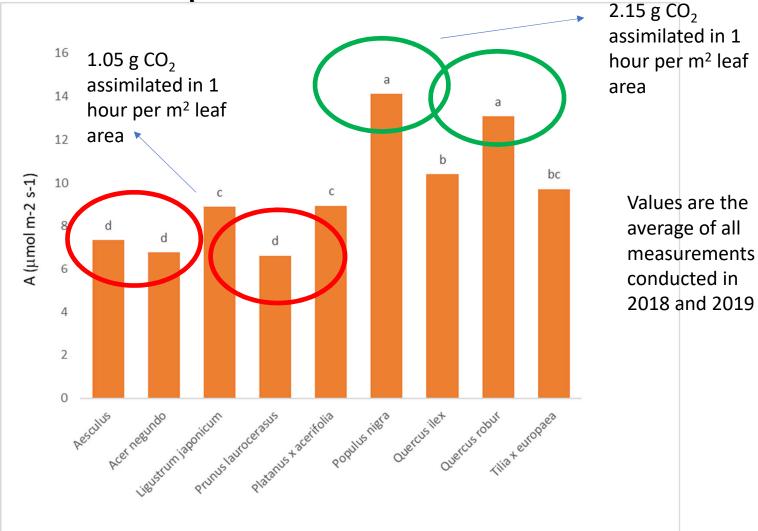


LIFE URBANGREEN (LIFE17 CCA/ITA/000079)

Screening CO₂ assimilation, transpiration, and PM adsorption using the big leaf model

In Krakow, measurements were conducted in spring, summer and fall using the same methods as in Rimini

LIFE URBANGREEN (LIFE17 CCA/ITA/000079)


Results: CO₂ assimilation

Rimini beach from a poplar top!

CO₂ assimilation per unit leaf area: effects of species in Rimini

P_{species} < 0.000

Species significantly affected the amount of atmospheric CO₂ converted into organic carbon by 1 m² leaf area exposed to full irradiance

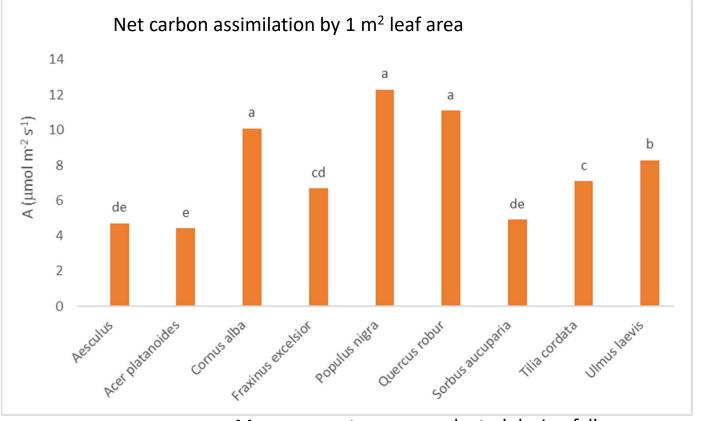
CO₂ assimilation per unit leaf area: effects of species and season in Rimini

Anisohydric species yielded a similar photosynthesis in spring and summer 18 Large decreases were observed 16 instead in isohydric species 14 bc 12 A (µmol m-2 s-1) h cd 10 d d cd Spring 8 cd Summer d 6 Fall C 4 2 Tilia X europaea 0 Populus niers Quercus robur Ligustumiaponicum Prunus laurocerasus Platanus tacertolia Quercusilet Acernegundo Aesculus

P_{speciesXseason} < 0.000

A significant species x season interaction was found, indicating that species performances change over time

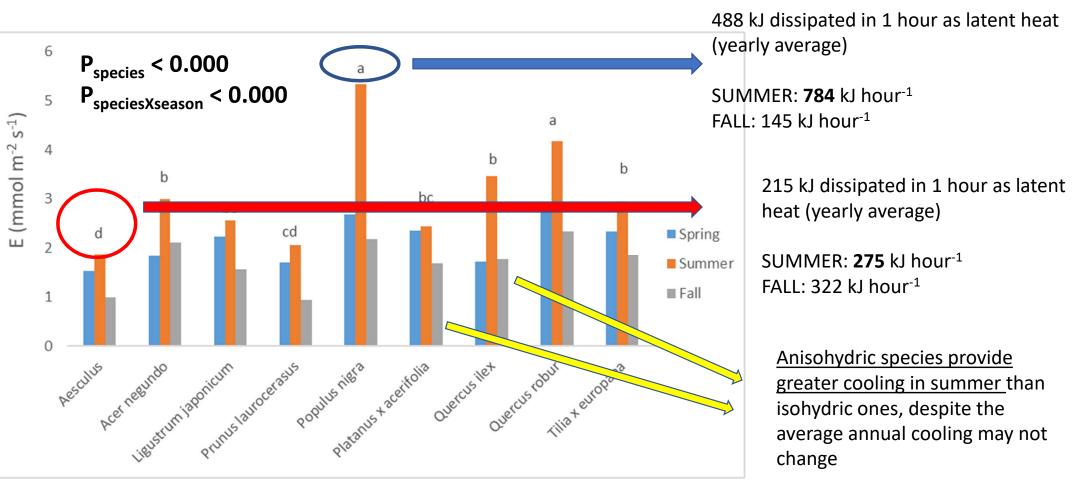
Young trees vs. mature trees


Park trees vs. street trees

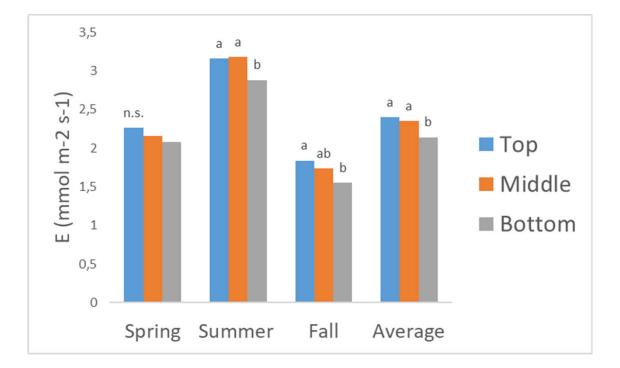
CO₂ assimilation per unit leaf area: effects of species in Krakow

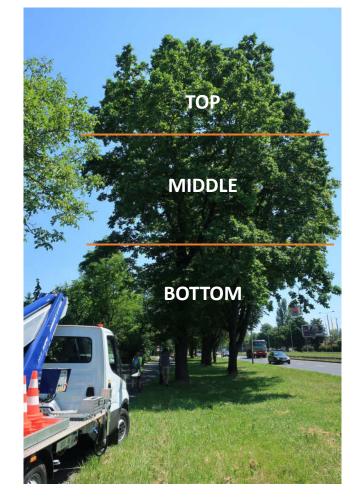
P_{species} < 0.000

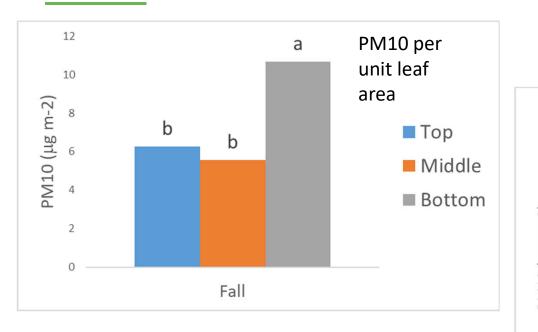
Best performing species for CO2 assimilation in Rimini confirmed in Krakow



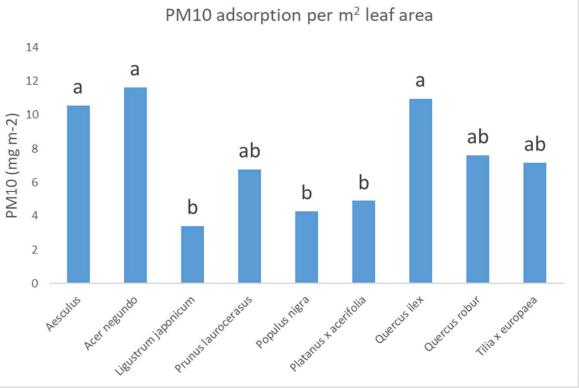
Measurements were conducted during fall


Transpiration and microclimate improvement


Transpiration and microclimate improvement in Rimini: effect of **species and season**


Transpiration and microclimate improvement in Rimini: effect of **leaf position**

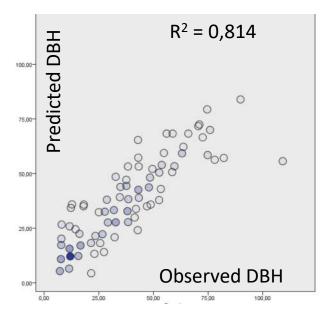
Leaves in the basal portion of the canopy transpired less water and assimilated less carbon than apical and medial leaves, regardless of species, strata, and plant age


Pollution

Lower leaves are the most effective to capture PM

Strata was not significant

Aesculus, Acer and Q. ilex adsorbed more PM10 per unit leaf area than Ligustrum, Populus, and Platanus

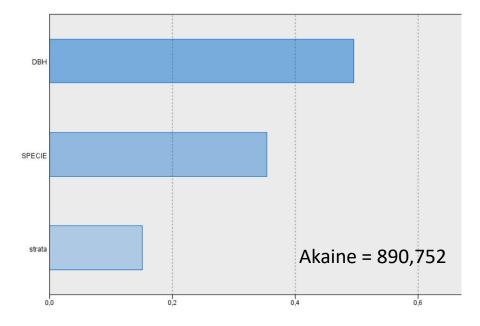


Tree growth: age as a predictor of DBH

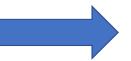
A machine-learning automated linear model procedure (SPSS) was used to identify significant predictors of DBH growth, then **DBH was expressed as a a function of age** using a curve estimation tool (SPSS)

DBH

 $DBH = a * age^b$



Age accounted for 87% of variability Species accounted for 13% Strata was not significant


Species	а	b	R2
Acer	1,199136	0,904958	0,89
Aesculus	1,032612	0,982802	0,951
Quercus robur	2,626648	0,728181	0,888
Prunus Iaurocerasus	2,254608	0,614149	0,468
Quercus ilex	2,885335	0,666726	0,771
Ligustrum lucidum	3,649799	0,440109	0,526
Populus nigra	1,421086	0,998772	0,903
Platanus x acerifolia	1,184895	0,996511	0,826
_ Tilia x europaea	1,519631	0,900484	0,899
		I	IFE 🕪 URBANGREEN

Tree growth: DBH as a predictor of Total Leaf Area (TLA)

A machine-learning automated linear model procedure (SPSS) was used to identify significant predictors of Total Lead Area, then **TLA was expressed as a a function of DBH** using a curve estimation tool (SPSS)

Total leaf area was correlated to DBH, but the correlation depends on species and strata

 $TLA = e^{a * b/DBH}$

Species	Strata	а	b	R2
Acer	Unpaved	7,521	-51,636	0,948
	Paved	6,881733	-39,2642	0,927
Aesculus	Unpaved	7,799567	-55,3401	0,95
	Paved	5,956216	-23,4743	0,935
Quercus robur	Unpaved	7,146393	-34,2247	0,968
	Paved	8,189543	-87,2398	0,807
Prunus laurocerasus	Unpaved	6,653643	-19,0259	0,502
Quercus ilex	Paved	7,280494	-37,3289	0,796
	Unpaved	6,354624	-48,048	0,926
Ligustrum	Paved	5,66981	-22,1225	0,612
	Unpaved	4,062086	-18,1414	0,563
Populus nigra	Paved	4,946129	-27,3438	0,862
	Unpaved	7,661452	-96,4858	0,996
Platanus x acerifolia	Paved	9,807912	-119,141	0,94
	Unpaved	6,455244	-32,6496	0,905
Tilia x europaea	Paved	6,815241	-34,9559	0,975
	Unpaved	6,595278	-36,8099	0,98

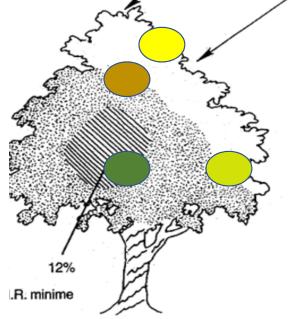
How many benefits would my 40-year-old tree provide, if it was...

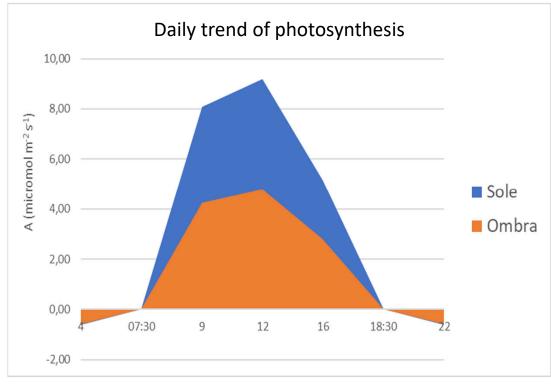
Benefits!

How many benefits would my 40-year-old tree provide, if it was...

Species	DBH (cm)	Leaf area (m2))	Day
	Both strata	Paved	Unpaved	The second s
Aesculus	38,8	161	518	and the second of the second o
Acer negundo	33,8	211	444	States and B
Ligustrum japonicum	18,5	20	59	CO
Prunus laurocerasus*	21	239	239	
Platanus x acerifolia	46,8	270	608	
Populus nigra	56,6	133	119	
Quercus ilex	33,8	160	470	
Quercus robur	38,5	192	334	The second second
Tilia x europaea	42,1	261 🕐	368	1150 A 10 10 10 10 10 10 10 10 10 10 10 10 10
LIFE URBANGRE (LIFE17 CCA/IT)	EEN * F	ree form, unpru	ined	SE PRO

Benefits!


Species	DBH (cm)	Latent hea (MJ h⁻¹)	at dissipated
	Both strata	Paved	Unpaved
Aesculus	38,8	34,2	130,4
Acer negundo	33,8	97,0 😬	124,2
Ligustrum japonicum	18,5	13,0	8,1
Prunus laurocerasus*	21	55,7	55,7
Platanus x acerifolia	46,8	96,7 💽	190,2
Populus nigra	56,6	70,8	62,5
Quercus ilex	33,8	61,0	167,2 😶
Quercus robur	. 38,5	102,6 🕐) 151,3 😶
Tilia x europaea	42,1	97,6 😶	139,7



* Free form, unpruned

Ongoing activities

- **1- From big leaf to real canopy:** up to date, measurements have been conducted on full sun leaves, and data integrated assuming negligible self-shading.
- Daily trend of leaf gas exchange are currently under measurements on leaves sampled in the outer and inner portions of the canopy

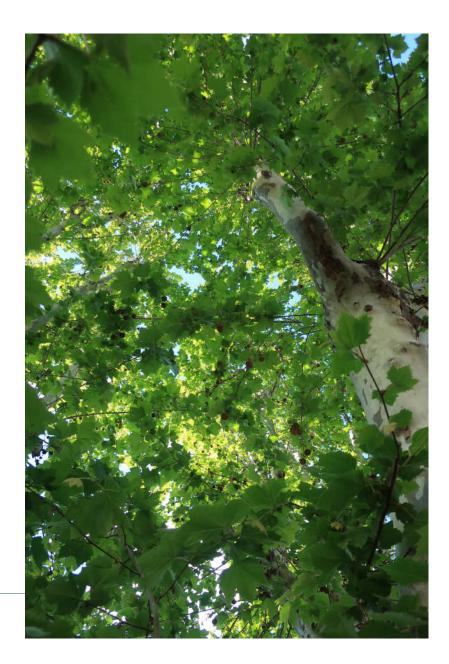
Time of the day

Ongoing activities - Management

Benefits do not only depend on species selection, but also on the way trees are managed.

Half of trees will be managed in the city's traditional way, the other half according to best management practices for:

- Irrigation
- Mulching
- Pruning
- Soil decompaction



Conclusions

- Physiological measurements conducted *in* situ provided novel information about benefits provided by urban tree species
- These data may assist a benefit-oriented planning of urban green areas
- Future research should expand physiological data collection to other species in different location

Thank you!

LIFE

With the contribution of the LIFE Programme of the European Union LIFE17 CCA/IT/000079

www.lifeurbangreen.eu